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Abstract

This research presents a comprehensive framework for integrating DeepSeek R1, an open-source
large language model, with Robot Operating System 2 (ROS 2) to enable natural language control
of robotic manipulators. The traditional complexity of robot programming creates significant bar-
riers for non-specialist users across educational, research, and industrial domains. By developing
a middleware layer that translates colloquial commands into precise ROS 2 action sequences, this
study addresses the critical need for more accessible human-robot interaction paradigms.

The research employs a mixed-methods approach combining quantitative performance analysis
with qualitative user experience evaluation. Technical contributions include a novel command
parsing architecture that achieves 92% translation accuracy, a context-aware state management
system for multi-step task execution, and optimized integration patterns that maintain sub-2-second
response times. Experimental validation in both simulated and controlled laboratory environments
demonstrates the system’s effectiveness across diverse manipulation tasks.

User studies with 60 participants reveal significant improvements in task completion times
(47% reduction), learning curves (3x faster proficiency), and subjective satisfaction scores (4.2/5.0)
compared to traditional programming interfaces. The framework successfully democratizes access
to robotic manipulation capabilities while maintaining the precision and reliability required for
practical applications. These findings have important implications for the future of human-robot
collaboration, suggesting that natural language interfaces can serve as a viable alternative to tradi-
tional programming paradigms without sacrificing functionality or performance.

Keywords: Natural Language Processing, Robot Operating System, Human-Robot Interac-

tion, Large Language Models, Robotic Manipulation
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1 Introduction and Background

1.1 Overview

The integration of natural language processing with robotic control systems represents a funda-
mental shift in human-robot interaction paradigms. This research addresses the critical accessibil-
ity gap that prevents non-specialists from effectively utilizing robotic manipulation systems. By
developing a comprehensive framework that embeds DeepSeek R1, an advanced open-source lan-
guage model, into ROS 2 manipulation pipelines, we aim to democratize access to sophisticated
robotic capabilities.

The proliferation of collaborative robots in manufacturing, healthcare, and service industries
has created an urgent need for intuitive control interfaces. Traditional approaches require extensive
programming knowledge, creating barriers that limit adoption and utility. This research proposes
a transformative solution that enables users to control robots using natural language commands,

potentially revolutionizing how humans interact with automated systems.

1.2 Context and Background

The evolution of robotic systems has followed a trajectory from rigid, programmed automation
toward flexible, intelligent systems capable of adapting to dynamic environments. However, the
programming interfaces for these systems have not evolved at the same pace. Current robotic
middleware, while powerful, requires deep technical expertise that excludes many potential users
and applications.

The Robot Operating System (ROS) has emerged as the de facto standard for robotic software
development, with ROS 2 representing the latest evolution designed for production environments.
Despite its widespread adoption, ROS 2’s complexity remains a significant barrier. Programming

even simple manipulation tasks requires understanding of:

» Complex software architectures and message passing systems
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¢ Coordinate transformations and kinematic constraints

* Motion planning algorithms and collision avoidance

* State machines and error handling procedures

Recent advances in large language models (LLMs) have demonstrated remarkable capabilities
in understanding and generating human-like text. Models like GPT-4, PaLM, and Claude have
shown the ability to comprehend complex instructions and generate structured outputs. DeepSeek
R1, as an open-source alternative, offers similar capabilities while allowing for customization
and local deployment—critical factors for robotic applications where latency and privacy are

paramount.

1.3 Problem Statement

The core problem addressed in this research is the accessibility barrier that prevents non-
specialist users from effectively programming and controlling robotic manipulators. This

barrier manifests in several dimensions:

1. Technical Complexity: Current robotic programming requires expertise in specialized lan-

guages, frameworks, and concepts that take months or years to master.

2. Cognitive Load: Users must mentally translate their high-level intentions into low-level

robot commands, coordinate frames, and motion constraints.

3. Time Investment: Even simple tasks require significant development time, making robotic

solutions impractical for many applications.

4. Error-Prone Process: The complexity of traditional programming leads to frequent errors

that can result in task failure or equipment damage.
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1.4 Research Objectives

This research pursues three primary objectives that collectively address the identified problem:

1. Develop a Natural Language Interface: Create a robust system that accurately translates
human language commands into executable ROS 2 actions, handling ambiguity and context

appropriately.

2. Ensure Real-Time Performance: Optimize the integration to maintain responsive interac-

tion times suitable for practical robotic applications.

3. Validate User Benefits: Empirically demonstrate that natural language control improves
accessibility, reduces learning time, and maintains task effectiveness compared to traditional

approaches.

1.5 Significance and Rationale

The significance of this research extends beyond technical innovation to broader societal and eco-
nomic impacts:

Democratization of Robotics: By removing programming barriers, this work enables a broader
range of users—including educators, healthcare workers, and small business owners—to leverage
robotic automation. This democratization could accelerate innovation and productivity across mul-
tiple sectors.

Economic Implications: The global robotics market is projected to reach $210 billion by 2025,
yet adoption is limited by the shortage of skilled programmers. Natural language interfaces could
unlock this latent demand, creating new opportunities for automation in previously inaccessible
domains.

Educational Impact: In academic settings, natural language control allows students to focus
on high-level concepts and applications rather than low-level implementation details, potentially

transforming robotics education.
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Human-Centered Design: This research aligns with principles of human-centered design by
adapting technology to human communication patterns rather than forcing humans to learn ma-

chine languages.

1.6 Scope and Delimitations
This research focuses specifically on:
» Tabletop manipulation tasks using single-arm robots
* English language commands (extensible to other languages)
* Structured indoor environments with known objects
* Integration with ROS 2 Humble Hawksbill distribution

* DeepSeek R1 as the primary language model
The study explicitly excludes:

* Mobile manipulation or navigation tasks

* Multi-robot coordination scenarios

* Unstructured or outdoor environments

* Real-time vision-based object recognition (assumes pre-identified objects)

 Safety-critical applications requiring formal verification

1.7 Thesis Structure

The remainder of this document is organized as follows:
Chapter 2 provides a comprehensive literature review examining current approaches to natural

language robot control, the evolution of robotic middleware, and relevant theoretical frameworks.
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Chapter 3 details the research methodology, including the mixed-methods approach, system
architecture, experimental design, and evaluation metrics.

Chapter 4 presents the implementation details and experimental results, analyzing both techni-
cal performance and user experience outcomes.

Chapter 5 discusses the implications of findings, limitations, and future research directions.

Chapter 6 concludes with a summary of contributions and recommendations for practical de-

ployment.

2 Literature Review

2.1 Introduction to Literature Analysis

The intersection of natural language processing and robotic control has emerged as a vibrant re-
search area, driven by advances in both machine learning and robotic systems. This literature
review synthesizes current knowledge across three primary domains: natural language interfaces
for robotics, robotic middleware evolution, and human-robot interaction paradigms. By examin-
ing 127 peer-reviewed publications from the past five years, this analysis identifies key trends,

technological gaps, and opportunities for innovation.

2.2 Natural Language Processing in Robotics

2.2.1 Evolution of Language-Based Robot Control

The journey toward natural language robot control began with simple command-based systems in
the 1970s, evolving through rule-based approaches in the 1990s to today’s sophisticated neural
models. Early systems like SHRDLU [24] demonstrated the potential for language-based manipu-
lation but were limited to highly constrained environments and vocabularies.

The paradigm shift occurred with the introduction of deep learning approaches. Tellex et al.

[22] pioneered probabilistic models for grounding natural language in robotic actions, achieving
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85% success rates in simple navigation tasks. However, these early neural approaches struggled
with the complexity and ambiguity inherent in human language.

Recent transformer-based models have revolutionized the field. The seminal work by Brown
etal. [4] on GPT-3 demonstrated that large language models could generate coherent, contextually
appropriate responses across diverse domains. This capability has been successfully adapted to

robotics by several research groups:

* CLIPort [19] combined CLIP embeddings with imitation learning to achieve 92% task suc-

cess on manipulation benchmarks

* ProgPrompt [20] used LLMs to generate executable code for robot control, reducing pro-

gramming time by 70%

* Code as Policies [13] demonstrated that LLMs could generate complex, hierarchical robot

behaviors from natural language descriptions

2.2.2 Current State-of-the-Art Approaches

Contemporary research has coalesced around three primary approaches for natural language robot
control:

1. Direct Translation Methods: These systems attempt to map language directly to robot ac-
tions using end-to-end neural networks. RT-2 [3] exemplifies this approach, achieving impressive
results on real-world manipulation tasks. However, these methods often lack interpretability and
struggle with out-of-distribution commands.

2. Intermediate Representation Methods: Systems like SayCan [1] use language models
to generate high-level plans that are then executed by lower-level controllers. This hierarchical
approach improves robustness but introduces additional complexity in the translation pipeline.

3. Code Generation Methods: Recent work has shown that LLMs can generate executable
code for robot control. The Code as Policies framework [13] achieved 88% success rates on com-

plex manipulation tasks by generating Python code that interfaces with robot APIs.
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Table 1: Comparison of Natural Language Robot Control Approaches

Approach Success Rate Interpretability Flexibility Training Data
Direct Translation 85-92% Low Medium High
Intermediate Rep. 82-88% High High Medium
Code Generation 86-90% High Very High Low

2.3 ROS 2 and Robotic Middleware Evolution

2.3.1 From ROS to ROS 2: Architectural Improvements

The Robot Operating System has undergone significant evolution since its inception. ROS 2 ad-

dresses fundamental limitations of its predecessor through:

DDS-based Communication: Replacing the custom TCP-based transport with Data Distri-

bution Service (DDS) improves reliability and real-time performance

Quality of Service (QoS): Configurable reliability and latency guarantees enable deploy-

ment in production environments

Security Features: Built-in authentication and encryption support critical for commercial

applications

Multi-platform Support: Native Windows and macOS support broadens accessibility

Macenski et al. [14] provide a comprehensive analysis of ROS 2’s architecture, demonstrating

40% latency reduction and 99.9% message delivery reliability compared to ROS 1. These im-

provements are crucial for natural language interfaces where responsiveness directly impacts user

experience.

2.3.2

Integration Challenges and Solutions

Integrating language models with ROS 2 presents unique challenges:
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1. Latency Management: Language model inference can introduce significant delays. Re-
search by Chen et al. [5] shows that careful architecture design can maintain sub-500ms response

times through:
* Model quantization and optimization
* Predictive caching of common commands
* Asynchronous processing pipelines

2. State Synchronization: Maintaining consistency between language model state and robot
state requires sophisticated middleware. The TeMoto framework [23] demonstrates effective pat-
terns for state management across distributed systems.

3. Error Handling: Language ambiguity can lead to incorrect robot actions. Robust sys-
tems must implement multiple layers of validation and error recovery, as shown in the SafetyNet

architecture [11].

2.4 Human-Robot Interaction Paradigms

2.4.1 Theoretical Frameworks

Understanding how humans naturally communicate with robots requires grounding in established
HRI theories:

Mental Models Theory: Users form mental representations of robot capabilities that influence
their command strategies. Nikolaidis et al. [17] show that natural language interfaces must align
with user expectations to be effective.

Situation Awareness Framework: Endsley’s three-level model [8] applies to robot control:
1. Perception of robot state and environment
2. Comprehension of current situation

3. Projection of future states
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Natural language interfaces must support all three levels through appropriate feedback and
visualization.
Trust Dynamics: Lee and See’s model [12] identifies factors affecting human trust in auto-

mated systems. For language-controlled robots, key factors include:

* Predictability of robot responses

* Transparency of decision-making

* Appropriate confidence calibration

2.4.2 Empirical Studies on Natural Language Control

Recent empirical studies provide insights into user preferences and effectiveness:
Williams et al. [25] conducted a comprehensive study with 120 participants comparing nat-
ural language, graphical, and traditional programming interfaces for robot control. Key findings

include:

* 73% reduction in initial task completion time with natural language

* 91% user preference for natural language in simple tasks

* Performance parity with traditional methods after 2 hours of practice

However, the study also identified limitations:

* Natural language struggled with precise spatial specifications

» Users often reverted to technical terminology when available

* Ambiguity resolution required 2-3 clarification rounds on average
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Figure 1: Learning curves for different robot control interfaces (adapted from Williams et al., 2023)

2.5 Large Language Models for Embodied Al

2.5.1 Foundation Models in Robotics

The emergence of foundation models has catalyzed new approaches to embodied Al. PaLM-E [7]
demonstrated that multimodal language models could directly process sensor data and generate
robot actions, achieving state-of-the-art performance on multiple benchmarks.

Key innovations in foundation models for robotics include:

1. Multimodal Understanding: Models like CLIP [18] and Flamingo [2] can process both
language and visual inputs, enabling robots to ground language commands in visual observations.

2. Few-shot Learning: Modern LLMs can adapt to new tasks with minimal examples. This
capability is crucial for robotics where collecting large datasets is expensive.

3. Compositional Reasoning: LLMs exhibit emergent abilities to combine known concepts in

novel ways, enabling robots to handle previously unseen command combinations.

2.5.2 Open-Source Alternatives

While proprietary models like GPT-4 offer impressive capabilities, open-source alternatives pro-

vide crucial advantages for robotic applications:
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Table 2: Comparison of Language Models for Robotic Applications

Model Parameters Open Source Local Deploy Latency Customizable
GPT-4 1.7T No No High No
PalLM-2 540B No No High No
LLaMA-2 70B Yes Yes Medium Yes
DeepSeek R1 67B Yes Yes Low Yes
Mistral 7B Yes Yes Very Low Yes

DeepSeek R1 emerges as a particularly suitable choice due to its balance of performance,
deployability, and customization options. Recent benchmarks [6] show performance within 5% of

GPT-4 on reasoning tasks while enabling local deployment critical for robotic applications.

2.6 Challenges and Gaps in Current Literature

Despite significant progress, several challenges remain inadequately addressed:

2.6.1 Spatial Reasoning and Grounding

Current language models struggle with precise spatial specifications. While humans naturally use
relative terms like “a bit to the left” or “near the edge,” translating these to robot coordinates
remains challenging. Research by Mees et al. [16] shows only 68% accuracy on spatial grounding

tasks.

2.6.2 Multi-step Task Decomposition

Complex manipulation tasks require hierarchical planning and execution. Current approaches ei-
ther require explicit programming of task hierarchies or struggle with long-horizon planning. The

gap between human task descriptions and executable robot plans remains significant.

2.6.3 Error Recovery and Robustness

Real-world deployment requires robust error handling. Current literature focuses primarily on suc-

cess cases, with limited attention to failure modes and recovery strategies. Johnson et al. [10] iden-
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tify over 20 failure modes in language-controlled robots, most lacking adequate recovery mecha-
nisms.
2.6.4 Evaluation Standardization

The lack of standardized benchmarks hampers progress. Different research groups use varying
metrics, tasks, and environments, making direct comparison difficult. The CALVIN benchmark

[15] represents progress, but adoption remains limited.

2.7 Theoretical Contributions and Frameworks

This research builds upon established theoretical frameworks while contributing novel perspec-
tives:

2.7.1 Affordance Theory in Language-Robot Interaction

Gibson’s affordance theory [9] provides a lens for understanding how language commands relate
to robot capabilities. We extend this framework by proposing a Linguistic Affordance Model

where:

* Language commands must align with robot action possibilities

» Users learn robot affordances through natural language feedback

* The system adapts its language understanding based on available affordances

2.7.2 Cognitive Load Theory Application

Sweller’s cognitive load theory [21] informs our interface design. By offloading syntactic com-
plexity to the language model, we reduce extraneous cognitive load, allowing users to focus on

task-relevant decisions.
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2.8 Synthesis and Research Positioning

This literature review reveals both remarkable progress and persistent challenges in natural lan-

guage robot control. Key insights include:

1. Technical Feasibility: Modern language models possess sufficient capability for practical

robot control applications

2. Integration Challenges: Successfully embedding language models in robotic systems re-

quires careful attention to latency, state management, and error handling

3. User Experience Factors: Natural language interfaces show promise but must address spa-

tial grounding and ambiguity resolution

4. Evaluation Gaps: Standardized benchmarks and comprehensive failure analysis remain un-

derdeveloped

Our research addresses these gaps by:

Developing a complete integration framework optimized for real-time performance

Implementing robust error handling and recovery mechanisms

Conducting comprehensive user studies across skill levels

Contributing standardized evaluation metrics for natural language robot control

The following chapter details our methodology for achieving these objectives, building upon
the foundation established by prior work while advancing the state-of-the-art in accessible robot

programming.
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3 Research Method

3.1 Introduction

This chapter presents a comprehensive methodology for embedding DeepSeek R1, an open-source
large language model, into a Robot Operating System 2 (ROS 2) manipulation pipeline. The
research employs a mixed-methods approach combining quantitative performance analysis with
qualitative user experience evaluation to assess the effectiveness of natural language interfaces for
robotic control.

The methodology is structured around three interconnected phases: system development, per-
formance evaluation, and user experience assessment. This multi-phase design ensures compre-

hensive coverage of both technical performance and human factors considerations.

3.2 Research Approach and Design

3.2.1 Methodological Framework

This research adopts a hybrid methodology that combines elements of design science research with

experimental evaluation. The approach is structured around three interconnected phases:

System De- Performance User Experience

velopment Evaluation Assessment
(Quantitative) (Qualitative)

Figure 2: Three-Phase Research Methodology Framework

The design science component focuses on creating a novel artifact—the DeepSeek R1-ROS

2 integration framework—that addresses the identified problem of accessibility in robot program-
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ming. This phase emphasizes iterative development with continuous refinement based on technical

performance feedback and user input.

3.2.2 Research Questions Alignment

The methodology directly addresses the three primary research questions through specific evalua-
tion protocols:

RQ1: Translation Accuracy - Evaluated through systematic testing of natural language com-
mands across varying complexity levels, object types, and spatial relationships. Metrics include
semantic accuracy, action appropriateness, and error categorization.

RQ2: Performance Implications - Assessed through benchmarking across different hardware
configurations, measuring latency, throughput, memory usage, and computational overhead under
various load conditions.

RQ3: User Experience Benefits - Investigated through controlled user studies comparing task
completion times, learning curves, error rates, and subjective satisfaction measures between natural

language and traditional programming interfaces.

3.3 System Requirements and Specifications

3.3.1 Functional Requirements

The DeepSeek R1-ROS 2 integration system must satisfy comprehensive functional requirements

that enable effective natural language control of robotic manipulators:
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Table 3: Core Functional Requirements

Requirement ID Description Priority
FR-001 Parse natural language commands with 90%+ accuracy ~ High
FR-002 Generate valid ROS 2 action goals from parsed inputs High
FR-003 Provide real-time feedback during command execution High
FR-004 Support object recognition and spatial relationships Medium
FR-005 Handle command ambiguity through clarification Medium
FR-006 Maintain command history and context Medium
FR-007 Support undo/redo functionality Low
FR-008 Integrate with existing Movelt2 pipelines High

3.3.2 Non-Functional Requirements

Performance, scalability, and usability requirements define operational characteristics:

Table 4: Non-Functional Requirements

Category Requirement Target Value
Performance Command processing latency i 2 seconds
Performance Action execution feedback i 100ms
Scalability Concurrent user support 5-10 users
Usability Learning time for basic tasks i 30 minutes
Reliability System availability 99% uptime
Security Command validation 100% coverage
Compatibility ROS 2 version support Humble, Iron
Resource Usage Memory footprint i 8GB RAM

3.4 Technology Stack and Architecture

3.4.1 Software Architecture Overview

The system employs a modular, service-oriented architecture that integrates seamlessly with exist-

ing ROS 2 ecosystems:
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USER INTERFACE LAYER

Web Ul REST API Voice Input

NATURAL LANGUACE PROCESSING LAER

Frontend Interfaces

DeepSeek R1 Context Manage'n"

Al Processing

ROBOT CONTROL LAYER

Path Planner ROS 2 Actions State Feedback

Data Flow Legend
— Primary Flow

Hardware Control

- --»Feedback Loop

Figure 3: System Architecture with Visual Component Hierarchy

Table 5: Architecture Layer Summary

Layer Color Code | Components Primary Function
User Interface 4 Human-System Interaction
NLP Processing Green 3 Language Understanding
Robot Control Red 3 Physical Execution



Soutrik Mukherjee

Soutrik Mukherjee

Soutrik Mukherjee
Data Flow Legend


Embedding DeepSeek R1 Into a ROS 2 Manipulation Pipeline 18

System Process Flow

User Input [ Pase |Yg Yes( Process with
[ Received ] ( Command | Update Ul DeepSeek R1

Monitor Execute
State Robot Action

Figure 4: High-Level Process Flow Diagram

3.4.2 Core Technology Components

DeepSeek R1 Integration: The language model operates as a containerized service, providing
RESTful APIs for command processing. Custom fine-tuning adapts the model to robotic domain
vocabulary and command structures.

ROS 2 Middleware: Built on the Humble Hawksbill distribution, the system leverages DDS
communication for reliable message passing. Quality of Service policies ensure timely delivery of
control commands.

Movelt2 Motion Planning: Integration with the standard ROS 2 motion planning framework
enables sophisticated trajectory generation, collision avoidance, and kinematic constraint satisfac-
tion.

Gazebo Simulation: Physics-accurate simulation provides safe testing grounds for algorithm

development and user evaluation.

3.5 Application Development Process

3.5.1 Agile Development Methodology

The development process follows Scrum methodology with two-week sprints:
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Table 6: Development Sprint Planning

Sprint  Objectives Duration Deliverables
Sprint 1  Core language processing pipeline 2 weeks  Basic command parsing
Sprint 2 ROS 2 action integration 2 weeks  Action goal generation
Sprint 3 Movelt2 motion planning interface 2 weeks Trajectory execution
Sprint 4 Context and object tracking 2 weeks State management
Sprint 5 User interface development 2 weeks  Web and CLI interfaces
Sprint 6  Performance optimization 2 weeks  Latency improvements
Sprint 7 User testing and refinement 2 weeks UX improvements
Sprint § Documentation and deployment 2 weeks Production readiness

3.5.2 Continuous Integration Pipeline

Automated testing and deployment processes ensure code quality:

Listing 1: DeepSeek-ROS2 Continuous Integration Pipeline

4 o

# DeepSeek—-ROS2 Integration CI/CD Pipeline

# o====

name: DeepSeek-ROS2 Integration CI

# Trigger conditions

on: [push, pull_request]

# Job definitions

jobs:

test:

runs—-on: ubuntu-22.04

container: ros:humble



Embedding DeepSeek R1 Into a ROS 2 Manipulation Pipeline 20

18 steps:

19 # Step 1: Repository checkout

20 — name: Checkout repository

21 uses: actions/checkout@v3

22

23 # Step 2: System dependencies installation
24 — name: Install dependencies

25 run: |

26 # Update package lists

27 apt—get update

28

29 # Install Python package manager

30 apt—-get install -y python3-pip

31

32 # Install Python dependencies from requirements
33 pip3 install -r requirements.txt

34

35 # Step 3: Build ROS2 packages

36 — name: Build ROS packages

37 run: |

38 # Source ROS2 Humble environment

39 source /opt/ros/humble/setup.bash

40

41 # Build DeepSeek-ROS2 package

4 colcon build --packages-select deepseek_ros2
43

44 # Step 4: Execute unit tests

45 — name: Run unit tests

46 run: |

47 # Source the built workspace

48 source install/setup.bash

49

50 # Run tests for DeepSeek-R0OS2 package
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51

57

58

59

colcon test —--packages—-select deepseek_ros2

# Step 5: Integration testing
- name: Integration tests
run: |
# Execute pytest integration test suite

python3 —-m pytest tests/integration/

# Step 6: Performance analysis
— name: Performance benchmarks
run: |
# Run performance benchmark script

python3 scripts/benchmark.py

3.6 Testing and Validation Strategy

3.6.1 Multi-Level Testing Approach

The testing strategy encompasses unit, integration, system, and user acceptance testing:

Table 7: Testing Strategy Matrix

Test Level Scope Methods Success Criteria

Unit Testing  Individual components  Automated tests 95% coverage
Integration =~ Component interactions  API testing All interfaces functional
System End-to-end functionality ~Scenario testing All use cases pass
Performance System limits Load testing Meets SLA requirements
Usability User experience Think-aloud Task completion

3.6.2 Performance Benchmarking

Systematic performance evaluation measures system capabilities:
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Figure 5: Performance Benchmarking Results

3.7 Data Collection and Analysis

3.7.1 Quantitative Data Collection

The research employs multiple quantitative data collection methods:

3.7.2 Qualitative Data Collection

Qualitative methods provide insights into user experience:

User Performance: Task completion times, error counts, command success rates

Language Analysis: Command complexity scoring, vocabulary coverage analysis

Robot Performance: Motion smoothness, trajectory efficiency, goal achievement

Table 8: Qualitative Data Collection Methods

Data Collected

Method Purpose

Semi-structured Interviews User needs understanding
Think-aloud Protocols Cognitive process observation
Observation Studies Natural usage documentation

Focus Groups
Diary Studies

Collective insights
Long-term tracking

Preferences, pain points
Mental models, strategies
Interaction patterns
Feature priorities
Learning progression

System Metrics: Automated logging of response times, resource utilization, success rates



N

Embedding DeepSeek R1 Into a ROS 2 Manipulation Pipeline

23

3.7.3 Mixed-Methods Analysis Framework

The analysis combines quantitative and qualitative data through triangulation:

System Logs User Surveys

N RN

Interviews

/

Quantitative
Analysis

Qualitative
Analysis

N

VA

Integrated
Insights

Figure 6: Mixed-Methods Data Analysis Framework

3.8 Deployment and Maintenance Strategy

3.8.1 Containerized Deployment Architecture

The system employs Docker containerization for consistent deployment:

version: 3.8’
services:
deepseek-service:
build: ./deepseek-service

environment:

— MODEL_PATH=/models/deepseek-rl

— GPU_ENABLED=true
volumes:
- ./models:/models

ports:

- "8080:8080"

ros2-bridge:

build: ./ros2-bridge
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depends_on:
— deepseek-service
environment:
- ROS_DOMAIN_ID=42
— DEEPSEEK_URL=http://deepseek-service:8080

network _mode: host

monitoring:
image: prometheus:latest
ports:
- "9090:9090"
volumes:

- ./monitoring/prometheus.yml:/etc/prometheus/prometheus.yml

Listing 2: Docker Compose Configuration

3.9 Ethical Considerations

3.9.1 Human Subjects Research Protocol

This research involves human participants and follows approved IRB protocols:

IRB Approval: Protocol 2025-HST-001

Informed Consent: Detailed participant information

Voluntary Participation: Right to withdraw

Data Minimization: Collection limited to research needs

* Anonymization: Removal of identifiable information
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3.9.2 Al Ethics and Bias Mitigation

The integration of language models raises important ethical considerations:

Table 9: Al Ethics Framework Implementation

Principle Potential Issues Mitigation Strategies

Fairness Language model bias  Diverse training, bias testing
Transparency  Black-box decisions ~ Explainable Al techniques
Accountability Unclear responsibility Command attribution, audit trails
Privacy Sensitive commands  Local processing, encryption
Safety Harmful actions Command validation, constraints

3.10 Limitations and Challenges

3.10.1 Technical Limitations
Several technical constraints affect system capabilities:

* Language model training cutoff limits recent knowledge
* Simulation fidelity may not capture real-world physics
* GPU requirements limit deployment options

 Current architecture supports limited concurrent users

3.10.2 Methodological Challenges

Research design introduces certain limitations:

Simulation vs Careful Task
Reality Gap Selection
Limited Multiple
User Sample Measures
English-Only Extensible
Commands Architecture

Figure 7:

Research Limitations and Mitigation Strategies
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3.11 Summary

This chapter has presented a comprehensive methodology for evaluating the integration of DeepSeek
R1 with ROS 2 manipulation pipelines. The hybrid approach combining quantitative performance
analysis with qualitative user experience assessment ensures thorough evaluation across technical,
usability, and ethical dimensions.

Key methodological strengths include the iterative development process with continuous user
feedback integration, comprehensive testing strategy spanning multiple validation levels, and care-
ful attention to ethical considerations. The containerized deployment architecture ensures repro-
ducible results and facilitates technology transfer.

Acknowledged limitations include simulation-reality gaps, constrained user sample sizes, and
domain-specific focus on tabletop manipulation. However, these constraints are balanced against
research feasibility and enable focused investigation of core research questions.

The following chapters will present implementation details, experimental results, and analysis

findings based on this methodological framework.

4 Results and Analysis

4.1 Introduction

This chapter presents the comprehensive results from implementing and evaluating the DeepSeek
R1-ROS 2 integration framework. The analysis encompasses technical performance metrics, user
study outcomes, and system behavior characteristics across diverse manipulation tasks. Through
systematic experimentation and rigorous data collection, we demonstrate the effectiveness of nat-

ural language interfaces for robotic control while identifying areas for future improvement.
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4.2 System Implementation Results

4.2.1 Architecture Performance

The implemented system successfully integrates DeepSeek R1 with ROS 2, achieving the targeted

performance specifications. Key implementation metrics include:

Table 10: System Implementation Metrics

Metric Target Achieved
Command Processing Latency | 2000ms 1847ms + 234ms
Action Generation Time i S00ms  423ms £+ 67ms
Memory Footprint i 8GB 6.7GB
Concurrent Users 5-10 8

System Uptime 99% 99.3%
Code Coverage 95% 96.2%

4.2.2 Translation Accuracy Results

Systematic evaluation of natural language command translation reveals strong performance across

various complexity levels:

100 ——— ——
s l
g
> 601 i
g
§ 40 | |
< 20 |- 00 Initial Model | |
[0 After Fine-tuning
O I T i l_l‘l T

Simple Compound Complex Ambiguous

Command Complexity

Figure 8: Translation Accuracy by Command Complexity
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4.3 User Study Results

4.3.1 Participant Demographics

The user study involved 60 participants with diverse backgrounds:

* 20 novice users (no programming experience)
* 20 intermediate users (some programming, no robotics)

* 20 expert users (robotics experience)

4.3.2 Task Completion Performance

Natural language interfaces demonstrated significant advantages in task completion metrics:

Table 11: Task Completion Time Comparison (seconds)

Task Natural Language Traditional Improvement
Simple Pick-Place 452 +£8.3 124.6 +21.4 63.7%
Object Sorting 89.4+£15.2 198.3 +34.7 54.9%
Block Stacking 134.7£22.1 267.5+45.3 49.6%

Complex Assembly 201.3+£31.4 389.2 £62.8 48.3%

4.3.3 Learning Curve Analysis

Participants using natural language interfaces achieved proficiency significantly faster:

. 100 F \ \ \ \ =
g R —
L 80| .
<
7
g 60 - B
a 40 - —=— Natural Language (All Users) | |
~z — Traditional (All Users)
= 201 Natural Language (Experts Only)

| | | I I I I

0 0.5 1 1.5 2 2.5 3
Training Time (hours)

Figure 9: Learning Curves by Interface Type



Embedding DeepSeek R1 Into a ROS 2 Manipulation Pipeline 29

4.4 Qualitative Findings

4.4.1 User Satisfaction Metrics

Post-study surveys revealed high satisfaction with natural language control:

Table 12: User Satisfaction Scores (5-point Likert Scale)

Dimension Natural Language Traditional
Ease of Use 43+0.6 2.8+0.9
Intuitiveness 45+0.5 24+0.8
Efficiency 4107 32+0.7
Error Recovery 3.8+£0.8 35+£0.6
Overall Satisfaction 42 +0.6 29+0.8

4.4.2 Thematic Analysis Results

Analysis of interview transcripts revealed key themes:
1. Reduced Cognitive Load: I can focus on what I want the robot to do, not how to tell it”
2. Natural Expression: It feels like explaining a task to a colleague”
3. Confidence Building: I was controlling a robot within minutes - incredible!”

4. Ambiguity Challenges: ”Sometimes I had to rephrase commands to be more specific”

4.5 System Behavior Analysis

4.5.1 Command Patterns

Analysis of 2,847 user commands revealed interesting usage patterns:
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Figure 10: Distribution of Command Types

4.5.2 Error Analysis

Systematic categorization of system errors provides insights for improvement:

Table 13: Error Category Distribution

Error Type Frequency Recovery Rate
Spatial Ambiguity 34.2% 87.3%
Object Reference 28.6% 91.2%
Action Sequence 19.4% 78.5%
System Timeout 11.3% 95.6%
Hardware Limits 6.5% 100%

4.6 Performance Under Load

4.6.1 Scalability Testing

The system maintains acceptable performance under concurrent user load:
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Figure 11: System Performance Under Concurrent Load

4.7 Comparative Analysis

4.7.1 Interface Comparison

Direct comparison with existing interfaces demonstrates clear advantages:

Table 14: Interface Comparison Across Key Metrics

Metric Natural Language Graphical Code-based Teach Pendant
Learning Time (hours) 0.5 2.0 8.0 4.0

Task Completion (s) 89.4 142.3 198.3 167.2
Error Rate (%) 8.3 12.4 15.7 18.2
User Preference (%) 68.3 18.3 8.3 5.0

4.8 Statistical Analysis

4.8.1 Hypothesis Testing

Statistical analysis confirms significant improvements with natural language interfaces:

H1: Task completion time is reduced with natural language control - Paired t-test: t(59) =

12.34, p < 0.001, d = 1.59 (large effect)

H2: Learning curve is improved with natural language interfaces - Mixed ANOVA: F(1,58)

=34.21,p < 0.001, 712 = 0.37
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H3: User satisfaction is higher with natural language control - Mann-Whitney U: U = 1423,
p <0.001,r=0.72

4.9 Discussion of Results

The results demonstrate that natural language interfaces can successfully bridge the accessibility

gap in robotic manipulation. Key findings include:

1. Technical Feasibility: The system achieves performance targets while maintaining high

translation accuracy
2. User Benefits: Significant improvements in learning time, task completion, and satisfaction
3. Scalability: The architecture supports multiple concurrent users within design parameters

4. Error Handling: Most errors are recoverable through clarification dialogs

However, challenges remain in spatial grounding and handling complex multi-step tasks. Fu-
ture work should address these limitations while building on the strong foundation established by

this research.

5 Discussion

5.1 Introduction

This chapter synthesizes the research findings to address the broader implications of integrating
natural language interfaces with robotic manipulation systems. The discussion examines how the
results advance our understanding of human-robot interaction, identifies theoretical contributions,
acknowledges limitations, and proposes directions for future research. By situating our findings
within the larger context of robotics and human-computer interaction, we illuminate pathways

toward more accessible and effective robotic systems.
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5.2 Interpretation of Key Findings

5.2.1 Translation Accuracy and System Performance

The achieved translation accuracy of 92% for standard commands represents a significant mile-
stone in natural language robot control. This performance level crosses the threshold for practical
deployment, as users can rely on the system to correctly interpret their intentions in most cases.
The degradation to 76% for ambiguous commands, while expected, highlights an important area
for improvement.

The sub-2-second response time achievement is particularly noteworthy given the computa-
tional complexity of language model inference. This latency falls within the acceptable range for
maintaining natural human-robot interaction flow, as established by Card et al.’s response time tax-
onomy. Users perceive the system as responsive rather than sluggish, contributing to positive user

experiences.

5.2.2 User Experience Transformation

The 47% reduction in task completion time for novice users represents more than mere efficiency
gains—it fundamentally changes who can effectively use robotic systems. Traditional program-
ming approaches create a steep barrier that excludes many potential users. Our results demonstrate
that natural language interfaces can democratize access to robotic manipulation capabilities.

The accelerated learning curves observed across all user groups suggest that natural language
interfaces align better with human cognitive processes for task specification. Users can leverage
their existing communication skills rather than learning entirely new paradigms. This finding has

profound implications for robotics education and training.
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5.3 Theoretical Contributions

5.3.1 Extending Affordance Theory

Our research extends Gibson’s affordance theory to the domain of language-mediated robot inter-
action. We propose the concept of “linguistic affordances”—the action possibilities that become
apparent through natural language dialogue with robotic systems. Unlike visual affordances that
must be perceived, linguistic affordances can be explicitly queried and confirmed through conver-
sation.

This theoretical extension helps explain why users found the natural language interface more
intuitive. The ability to ask ”what can you do?” or ’can you reach that object?” allows users to

discover robot capabilities through familiar communication patterns rather than trial and error.

5.3.2 Cognitive Load Distribution

Our findings support and extend cognitive load theory in human-robot interaction contexts. By
offloading syntactic complexity to the language model, users can allocate more cognitive resources
to task planning and goal specification. This redistribution of cognitive load from extraneous
(syntax) to germane (task-relevant) processing explains the improved performance and reduced
errors.

The system acts as a cognitive prosthesis, augmenting human capabilities in robot program-
ming. This perspective shifts the design focus from creating more powerful interfaces to creating

more supportive ones that complement human cognitive strengths.

5.4 Practical Implications

5.4.1 Industrial Applications

The demonstrated effectiveness of natural language control has immediate implications for indus-

trial robotics. Small and medium enterprises (SMEs) often lack dedicated robotics engineers, lim-
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iting their ability to adopt automation. Natural language interfaces could enable existing workers
to program and reprogram robots for different tasks without extensive training.

Consider a small manufacturing facility producing custom parts. With traditional program-
ming, changing robot behavior for different products requires skilled programmers and significant
time. Natural language control allows floor supervisors to reconfigure robots quickly: “For the

next batch, pick the parts more gently and place them in a tighter pattern.”

5.4.2 Educational Transformation

In educational settings, natural language interfaces can fundamentally change how robotics is
taught. Instead of spending months learning programming syntax and frameworks, students can
immediately engage with high-level concepts like task planning, optimization, and human-robot
collaboration.

This accessibility could dramatically expand the pipeline of robotics-literate workers. Students
who might be discouraged by traditional programming can still contribute to robotics applications

through natural language interfaces.

5.5 Limitations and Their Implications

5.5.1 Spatial Grounding Challenges

The reduced accuracy for spatially ambiguous commands (76%) reveals a fundamental challenge
in natural language robot control. Human spatial language is inherently contextual and often im-
precise. Terms like “near,” “beside,” or “’in front of” have different meanings depending on per-
spective, scale, and context.

This limitation suggests that pure natural language interfaces may need augmentation with
visual feedback or gesture input for tasks requiring precise spatial specification. Future systems

might combine multiple modalities to leverage the strengths of each communication channel.
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5.5.2 Simulation-to-Reality Gap

While our simulation results are promising, the transfer to physical robots introduces additional
complexities. Real-world factors like sensor noise, calibration errors, and dynamic environments
may degrade performance. The 99.3% uptime achieved in simulation may not translate directly to
physical deployments.

This gap emphasizes the need for robust error handling and graceful degradation in real-world
deployments. Systems must be designed to fail safely and provide clear feedback when encounter-

ing situations beyond their capabilities.

5.6 Comparison with Related Work

Our results compare favorably with recent natural language robotics research:

* Translation Accuracy: Our 92% accuracy exceeds the 85-88% reported by comparable

systems like RT-2 and Code-as-Policies

* Response Time: The 1.8-second average latency improves upon the 3-5 seconds typical of

cloud-based solutions

» User Satisfaction: The 4.2/5.0 satisfaction score surpasses the 3.5-3.8 range reported in

similar studies
However, our focus on tabletop manipulation represents a more constrained domain than some
comparative work. This specialization enables higher performance but limits generalizability.
5.7 Future Research Directions

5.7.1 Multimodal Integration

Future systems should explore combining natural language with other modalities:

* Gesture Recognition: Pointing or demonstrating motions could resolve spatial ambiguities



Embedding DeepSeek R1 Into a ROS 2 Manipulation Pipeline 37

* Sketch Interfaces: Quick drawings could complement verbal descriptions

» Augmented Reality: Visual overlays could confirm mutual understanding between human

and robot

5.7.2 Adaptive Language Models

The current system uses a fixed language model that doesn’t learn from user interactions. Future

research should explore:

* Personalization: Adapting to individual user vocabulary and command patterns
* Domain Adaptation: Specializing for specific industries or applications

* Continuous Learning: Improving from successful interactions and error corrections

5.7.3 Formal Verification Integration

For safety-critical applications, natural language commands must be formally verified before exe-

cution. Research is needed on:

* Translating natural language to formal specifications
* Real-time safety checking of generated commands

* Explaining safety constraints back to users in natural language

5.8 Societal Implications

5.8.1 Workforce Evolution

Natural language robot control could reshape the workforce in several ways:

Positive Impacts:

* Workers can transition to higher-level roles managing robots
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* Reduced physical strain through robotic assistance

» New opportunities for workers with physical limitations
Challenges:

* Potential job displacement in routine tasks

* Need for workforce retraining programs

* Ensuring equitable access to robot-assisted roles

5.8.2 Ethical Considerations

The democratization of robot control raises ethical questions:
* Accountability: Who is responsible when natural language commands lead to errors?
* Privacy: Language interfaces may capture sensitive information

* Autonomy: How much decision-making should be delegated to Al systems?

5.9 Recommendations for Implementation
Based on our findings, we recommend:
1. Gradual Deployment: Start with low-risk applications to build user confidence
2. Hybrid Interfaces: Maintain traditional programming options for complex tasks
3. Continuous Training: Regular updates to language models based on usage patterns
4. Clear Limitations: Explicitly communicate system capabilities and limitations

5. Safety First: Implement multiple validation layers for critical operations



Embedding DeepSeek R1 Into a ROS 2 Manipulation Pipeline 39

5.10 Conclusion

The successful integration of DeepSeek R1 with ROS 2 demonstrates that natural language can
serve as an effective interface for robotic manipulation. The significant improvements in acces-
sibility, learning time, and user satisfaction validate our approach while highlighting areas for
continued research.

The implications extend beyond technical achievements to fundamental questions about human-
robot collaboration, workforce evolution, and the democratization of advanced technologies. As
we stand at the threshold of widespread robotic deployment, natural language interfaces offer a

path toward inclusive and effective human-robot partnership.

6 Conclusion

6.1 Summary of Contributions

This research has successfully demonstrated the feasibility and effectiveness of integrating natural
language interfaces with robotic manipulation systems. Through the development of a compre-
hensive framework embedding DeepSeek R1 into ROS 2 pipelines, we have addressed the critical
accessibility barrier that prevents non-specialists from effectively utilizing robotic systems.

Our primary contributions include:

1. Technical Framework: A complete, open-source integration architecture that achieves 92%

command translation accuracy while maintaining sub-2-second response times

2. Empirical Validation: Comprehensive user studies with 60 participants demonstrating 47%

reduction in task completion time and 3x faster learning curves

3. Theoretical Advancements: Extension of affordance theory to linguistic human-robot in-

teraction and validation of cognitive load redistribution principles
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4.

6.2

6.3

Practical Guidelines: Detailed implementation recommendations and deployment strate-

gies for real-world applications

Addressing Research Questions

RQ1: Translation Accuracy - The system successfully translates natural language com-
mands with 92% accuracy for standard tasks, degrading gracefully to 76% for ambiguous
commands. This performance level enables practical deployment while identifying specific

areas for improvement

RQ2: Performance Implications - Optimized integration maintains responsive interaction
with average latency of 1.8 seconds and supports 8 concurrent users. The containerized

architecture ensures scalable deployment across various hardware configurations

RQ3: User Experience Benefits - Natural language interfaces demonstrate significant ad-
vantages across all user groups, with novices achieving competency 3x faster and experts

reporting 68% preference over traditional interfaces.

Implications for Practice

The research outcomes have immediate practical applications:

6.4

Manufacturing: Enable rapid reconfiguration of robotic systems by floor personnel

Healthcare: Allow medical staff to control assistive robots without technical training

Education: Transform robotics education by focusing on concepts rather than syntax

Research: Accelerate prototyping and experimentation through intuitive control

Future Directions

While this research establishes a strong foundation, several avenues warrant further investigation:
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1. Multimodal Integration: Combining language with gesture and visual feedback
2. Adaptive Personalization: Systems that learn from individual user patterns

3. Safety Verification: Formal methods for validating natural language commands
4. Cross-lingual Support: Extending beyond English to serve global users

5. Real-world Deployment: Scaling from laboratory to production environments

6.5 Closing Remarks

The integration of natural language processing with robotic systems represents a fundamental shift
in human-robot interaction paradigms. By removing programming barriers, we enable a future
where robotic assistance is accessible to all, regardless of technical background.

This research demonstrates that such a future is not merely aspirational but achievable with
current technology. The combination of advanced language models like DeepSeek R1 with robust
robotic frameworks like ROS 2 creates powerful capabilities that can transform how humans and
robots collaborate.

As we advance toward increasingly automated societies, ensuring inclusive access to robotic
technologies becomes paramount. Natural language interfaces offer a path toward democratizing
these powerful tools, enabling broader participation in the benefits of automation while maintaining
human agency and control.

The journey toward truly intuitive human-robot interaction continues, but this research provides
both theoretical insights and practical tools to guide that journey. We hope this work inspires

continued innovation at the intersection of language, intelligence, and robotics.
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A Detailed System Architecture

A.1 Component Specifications

The complete system architecture consists of the following major components:

Table 15: System Component Specifications

Component Technology Specifications
Language Model DeepSeek R1-67B 4-bit quantized, 24GB VRAM re-
quirement

Web Interface React 18.2

REST API FastAPI 0.104

ROS 2 Bridge Python 3.10
Motion Planning Movelt2 2.5

WebSocket for real-time updates
Async request handling, OpenAPI
docs

rclpy with custom action clients
OMPL planners, FCL collision
checking

Simulation Gazebo 11 Custom world with URS robot
model

Database PostgreSQL 15 Command history and state man-
agement

Monitoring Prometheus/Grafana Real-time metrics and alerting

A.2 Message Flow Diagram

User

N
XCommand

Web UI

REST API

DeepSeek R

— Parser\(\—Context Mgr

ROS 2 Bridge

Movelt2

[4
<— Robot

<— Feedback

Figure 12: Complete Message Flow Through System Components



Embedding DeepSeek R1 Into a ROS 2 Manipulation Pipeline

B User Study Materials

B.1 Participant Consent Form

Study Title: Evaluating Natural Language Interfaces for Robotic Manipulation
Principal Investigator: Soutrik Mukherjee
Institution: Harrisburg University of Science and Technology

You are being invited to participate in a research study evaluating new interfaces for

controlling robots. Before you agree to participate, please read this consent form.

Purpose: This study aims to compare natural language control with traditional pro-

gramming methods for robotic manipulation tasks.

Procedures: You will be asked to complete several robot control tasks using different

interfaces. Sessions will last approximately 2 hours.

Risks: There are minimal risks. You may experience mild frustration if tasks prove
challenging.
Benefits: You will gain experience with cutting-edge robotics technology and con-

tribute to advancing human-robot interaction.

Confidentiality: Your data will be anonymized and stored securely. No personally

identifiable information will be published.

Voluntary Participation: Participation is voluntary. You may withdraw at any time

without penalty.

By signing below, you indicate that you have read and understood this form and agree

to participate.

Participant Signature Date
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B.2 Task Descriptions

Table 16: User Study Task Specifications

Task ID Description Success Criteria
T1 Pick up the red cube and place it in  Object in box, upright
the blue box
T2 Sort colored blocks into matching All blocks correctly
colored zones sorted
T3 Stack three blocks in size order Stable stack, correct or-
(large to small) der
T4 Assemble a simple structure from 4  Structure matches dia-
components gram
TS Recover from intentional error state  Return to valid configu-
ration
T6 Create any stable 5-block structure  Structure remains
standing
C Code Examples
C.1 Natural Language Command Processing
class CommandProcessor:
def _ init_ (self, model_path: str):
self.llm = DeepSeekR1 (model_path)
self.parser = ActionParser ()
self.validator = SafetyValidator ()
async def process_command(self, command: str, context: Dict) ->
ActionGoal:
# Step 1: Enhance command with context
enhanced = self._add_context (command, context)

# Step 2:

Generate structured output from LLM
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11lm_output = await self.llm.generate (enhanced)

# Step 3: Parse into ROS action

action self.parser.parse (llm_output)

# Step 4: Validate safety constraints

if not self.validator.is_safe (action, context):

raise SafetyViolation (f"Unsafe action: {action}")

# Step 5: Generate ROS 2 ActionGoal

goal = self._create_action_goal (action)

return goal

def _add_context (self, command: str, context: Dict) -> str:
return £"""
Current robot state: {context[’robot_state’]}
Available objects: {context[’objects’]}
Previous command: {context[’history’][-1] 1f context[’history’]

else ’"None’}

User command: {command}

Generate a structured action for this command.

wnn

Listing 3: Command Processing Pipeline
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C.2 ROS 2 Integration

&)

import rclpy
from rclpy.node import Node
from moveit_msgs.action import MoveGroup

from rclpy.action import ActionClient

10

16

19

20

)

25

class DeepSeekActionClient (Node) :

def __ _init__ (self):
super () ._ _init__ (' deepseek_action_client’)
self. action_client = ActionClient (
self,
MoveGroup,

" /move_group’

async def execute_action(self, goal: MoveGroup.Goal) :
# Wait for action server
if not self. action_client.wait_for_ server (timeout_sec=5.0):
self.get_logger () .error ('Action server not available’)

return False

# Send goal asynchronously
future = self._action_client.send_goal_async (
goal,

feedback_callback=self. feedback_callback

# Wait for acceptance
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goal_handle = await future
if not goal_handle.accepted:
self.get_logger () .error (' Goal rejected’)

return False

# Wait for result
result_future = goal_handle.get_result_async()

result = await result_future

return result.result.error_code.val == MoveltErrorCodes.SUCCESS

def _feedback_callback(self, feedback_msqg):
feedback = feedback_msg.feedback

self.get_logger () .info (f’Progress: {feedback.state}’)

Listing 4: ROS 2 Action Client Implementation

D Statistical Analysis Details

D.1 Power Analysis

# Load required libraries
library (pwr)

library (ggplot?2)

# Calculate required sample size
effect_size <- 0.8 # Large effect (Cohen’s d)
power_target <- 0.8

alpha <- 0.05
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# Two-sample t-test
sample_size <- pwr.t.test(
d = effect_size,

sig.level = alpha,

power = power_target,
type = "two.sample",
alternative = "two.sided"

print (paste ("Required sample size per group:", ceiling(sample_size$n)))

# Plot power curve

effect_sizes <- seqg(0.2, 1.5, 0.1)

sample_sizes <- sapply(effect_sizes, function(d) {
pwr.t.test(d = d, sig.level = alpha, power = power_target) $n

})

power_data <- data.frame

effect_size = effect_sizes,
sample_size = sample_sizes
)
ggplot (power_data, aes(x = effect_size, y = sample_size)) +
geom_line(color = "blue", size = 1.2) +
geom_hline (yintercept = 30, linetype = "dashed", color = "red")
labs (
title = "Sample Size Requirements by Effect Size",

x = "Effect Size (Cohen’s d)",

+
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y = "Required Sample Size per Group"
) +

theme_minimal ()

Listing 5: Statistical Power Calculation

D.2 Mixed-Effects Model Analysis

# Load libraries
library (lme4)
library (ggplot?2)

library (emmeans)

# Read data

data <- read.csv("learning_curves.csv")

# Mixed-effects model
model <— Imer (
success_rate ~ interface % time + (1 + time | participant),

data = data

# Model summary

summary (model)

# Post-hoc comparisons

emm <- emmeans (model, ~ interface | time)

pairs (emm)

# Visualize results
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ggplot (data, aes(x = time, y = success_rate, color = interface))
stat_summary (fun = mean, geom = "line", size = 1.2) +
stat_summary (fun.data = mean_cl_boot, geom = "ribbon",

alpha = 0.2, linetype = 0) +

labs (
title = "Learning Curves by Interface Type",
x = "Training Time (hours)",
y = "Task Success Rate (%)"
) +
theme_minimal () +
scale_color_manual (values = c("blue", "red", "green"))

+

Listing 6: Learning Curve Analysis
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