SOUTRIK MUKHERJEE

soutrik.viratech@gmail.com 🤳 267-249-8600 🛅 linkedin.com/in/soutrik-mukherjee github.com/SoutrikMukherjee Philadelphia, PA

EDUCATION

Harrisburg University of Science and Technology

Master's of Science, Computer & Information Sciences (Scientific Computing)

Master's Thesis: Implementing DeepSeek R1 LLM in ROS2 manipulation pipeline

University of Pennsylvania

Graduate Studies, Mechanical Engineering (Robotics & Manufacturing)

Transferred to focus on computational approaches to engineering problems

National Institute of Technology Rourkela

Bachelor's of Technology, Design & Manufacturing Engineering, GPA: 9.19/10.0

Undergrad Thesis: Topology Optimization using Computational Optimization Techniques

Jun 2018 - May 2022

Mar 2024 - Feb 2026

Aug 2022 - Jan 2024

GPA: 3.75/4.0

Highest CGPA in the cohort

PUBLICATIONS

Structural Optimization of Headphone Design Using Topology Optimization, DOI:10.35940/ijrte.F7462.0712223 - Link

- Iteratively generated an optimized (higher structural stiffness/material mass) headphone using design as data points in space concept and implementing Physics Informed Neural Netoworks (PINNs) for the most optimized data point distribution
- Bi-Directional Drone Design and Path Planning for Agricultural Applications, DOI:10.35940/ijrte.B6393.0910321 Link
 - Designed a functional CAD model of a novel Bi-directional Drone, and used ROS2 in Gazebo to simulate and test path planning algorithm in unsupervised environment, documented challenges and hardware configurations for the design
- Design and Analysis of Automatic Rotating System for Industrial De-scaling, DOI: 10.35940/ijrte.B6395.0910321 Link
 - Engineered a perforated cylindrical agro-fishery system—CAD, FEA/structural tests, and embedded control—for remote operation with adjustable blades sized to case-specific dimensions

TECHNICAL SKILLS

Languages: Python, C++, MATLAB, LaTeX

AI/ML Frameworks: PyTorch, JAX; ONNX Runtime, TensorRT Parallel & Performance: CUDA, OpenCL, OpenMP, MPI, NCCL Robotics & Simulation: ROS 2/DDS, Movelt 2, Gazebo, RViz

Techniques (Perception & Control): Sensor Fusion, Kalman filtering (EKF), Proportional-integral-derivative (PID); quantization (INT8/FP16)

Build & Tooling: CMake, Git, Docker, VS Code

Hardware/Embedded: ARM Cortex-M/A, STM32; FPGA (Xilinx); PCB (KiCad/Altium); I²C/SPI/CAN

CAD/CAE: SolidWorks, CATIA V5, Fusion 360, AutoCAD; ANSYS Mechanical (FEA)

PROFESSIONAL EXPERIENCE

Graduate Researcher | *GRASP Lab, University of Pennsylvania*

March 2023 - March 2024

- Developed the perception-planning-control loop of a fetch mobile manipulator (7-DOF arm, telescoping spine, pan-tilt head; 11 total DOF with base and gripper) on a Freight differential-drive base to operate in an unsupervised manner in our indoor test.
- Fused LiDAR + RGB-D + IMU for navigation, tuned the motion planning stack to avoid stalls, hardened the ROS 2 messaging over flaky Wi-Fi, and built a regression harness to fix bugs and prove improvements.
- Integrated SMORES-EP modular robot "faces" into the manipulation pipeline to do contact-aware grasps and re-tries on odd shapes. SMORES-EP modules has large area-of-acceptance; processor runs Kalman filters; Wi-Fi to central controller

Embedded Systems Intern | *ISRO* - *Indian Space Research Organisation*

Sep 2021 - Mar 2022

- Built and validated a three-axis reaction-wheel attitude dynamics model in MATLAB Simulink, then closed the sim-to-real loop on a hardware-in-the-loop (HIL) bench with actual motor electronics.
- Scripted sweeps to tune the controller and designed fixtures so vibe/thermal tests could be repeated exactly from Flight-class reaction wheel assemblies from ISRO's Inertial Systems Unit (IISU).
- Tech Stack: MATLAB/Simulink + Simscape Multibody for multi-body attitude dynamics; quaternion kinematics + reaction-wheel torque models. Extended Kalman Filters (EKF) for rate estimation. PID attitude controllers step + slew.

Research Fellow | Indian National Academy of Engineering (INAE)

Apr 2021 - Aug 2021

- Tuned a robotic welding process using structured experiments, closed the loop with temperature feedback, and automated weld quality checks with computer vision so defects dropped and line operators had fewer reworks
- Design of Experiment (DOE) with Taguchi orthogonal arrays for factor screening; Response Surface Methodology (RSM) for optimization. IR camera for bead temperature; Proportional-Integral (PI) control for adaptive wire-feed; PLC via Modbus.

SELECTED PROJECT

Implementing DeepkSeek R1 LLM ROS2 manipulation pipeline | Master's Thesis

- Built LLM→ROS 2 bridge: containerized DeepSeek R1 service with REST API, implemented command parser + context manager; integrated Movelt2 for trajectory execution and Gazebo for testing and validation framework
- Engineered a low-latency pipeline: <2s end-to-end command processing (1.85s avg), 423ms action-goal generation, supporting 8 concurrent users at 99.3% uptime. Shipped CI/CD + test harness: ROS 2 Humble container builds, unit/integration tests, and performance benchmarks. Ran user study (n=60) across novice-expert users; natural-language control cut task times by 48-64%

COMMUNITY IMPACT & LEADERSHIP

- MANAV Founder & Director: Launched in 2019 to bridge the rural tech gap; scaled from weekend effort to a program in 12 government schools, serving 200+ students with math, engineering demos, and career guidance.
- Peer Mentoring: Mentor at Institute Student Counseling wing helping students suffering from mental health issues
- Athletics: Represented as the caption of Under-16 inter-state Cricket team